Package: mdw 2024.8-1

mdw: Maximum Diversity Weighting

Dimension-reduction methods aim at defining a score that maximizes signal diversity. Three approaches, tree weight, maximum entropy weights, and maximum variance weights are provided. These methods are described in He and Fong (2019) <doi:10.1002/sim.8212>.

Authors:Zonglin He [aut], Youyi Fong [cre]

mdw_2024.8-1.tar.gz
mdw_2024.8-1.zip(r-4.5)mdw_2024.8-1.zip(r-4.4)mdw_2024.8-1.zip(r-4.3)
mdw_2024.8-1.tgz(r-4.5-any)mdw_2024.8-1.tgz(r-4.4-any)mdw_2024.8-1.tgz(r-4.3-any)
mdw_2024.8-1.tar.gz(r-4.5-noble)mdw_2024.8-1.tar.gz(r-4.4-noble)
mdw_2024.8-1.tgz(r-4.4-emscripten)mdw_2024.8-1.tgz(r-4.3-emscripten)
mdw.pdf |mdw.html
mdw/json (API)

# Install 'mdw' in R:
install.packages('mdw', repos = c('https://youyifong.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda-Forge:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.34 score 22 scripts 213 downloads 7 exports 4 dependencies

Last updated 7 months agofrom:7369a927ca. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 19 2025
R-4.5-winOKFeb 19 2025
R-4.5-macOKFeb 19 2025
R-4.5-linuxOKFeb 19 2025
R-4.4-winOKFeb 19 2025
R-4.4-macOKFeb 19 2025
R-4.3-winOKFeb 19 2025
R-4.3-macOKFeb 19 2025

Exports:asym.v.easym.v.ventropy.weightget.bwpca.weighttree.weightvar.weight

Dependencies:kyotillatticeMASSMatrix

Maximum Diversity Weighting

Rendered frommdw-vignette.pdf.asisusingR.rsp::asison Feb 19 2025.

Last update: 2020-06-18
Started: 2020-06-18