Title: | Forward Stepwise Deep Autoencoder-Based Monotone NLDR |
---|---|
Description: | FS-DAM performs feature extraction through latent variables identification. Implementation is based on autoencoders with monotonicity and orthogonality constraints. |
Authors: | Youyi Fong [cre], Jun Xu [aut] |
Maintainer: | Youyi Fong <[email protected]> |
License: | GPL (>= 2) |
Version: | 2024.7-30 |
Built: | 2024-10-30 03:14:35 UTC |
Source: | https://github.com/cran/FSDAM |
See reference.
data("cc.505")
data("cc.505")
A data frame with 189 observations on the following 27 variables.
ptid
a character vector
trt
a numeric vector
case
a numeric vector
control
a numeric vector
perprot
a numeric vector
last_uninfec_immun_vst
a numeric vector
racefull
a numeric vector
racefulltxt
a character vector
bmi
a numeric vector
bmicat
a numeric vector
bmicattxt
a character vector
earliest_pos_vst
a numeric vector
level
a character vector
matchlevel
a character vector
samplingfraction
a numeric vector
vst9subcohort
a numeric vector
HIVwk28preunbl
a numeric vector
age
a numeric vector
racecc
a character vector
bhvrisk
a numeric vector
BMI
a numeric vector
stratuminds_vaccs
a numeric vector
stratuminds
a numeric vector
cd4.env.poly
a numeric vector
cd8.env.poly
a numeric vector
mfounders
a numeric vector
wei
a numeric vector
Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.
Forward stepwise deep autoencoder-based monotone nonlinear dimension reduction.
fsdam(dat, opt_numCode = ncol(dat), opt_seed = 1, opt_model = "n", opt_gpu = 0, opt_k = 100, opt_nEpochs = 10000, opt_constr = c("newpenalization", "constrained", "none"), opt_tuneParam = 10, opt_penfun = "mean", opt_ortho = 1, opt_earlystop = "no", verbose = FALSE) ## S3 method for class 'fsdam' plot(x, which=c("mse", "history", "decoder.func", "scatterplot"), k=NULL, dim.1=NULL, dim.2=NULL, col.predict=2, ...)
fsdam(dat, opt_numCode = ncol(dat), opt_seed = 1, opt_model = "n", opt_gpu = 0, opt_k = 100, opt_nEpochs = 10000, opt_constr = c("newpenalization", "constrained", "none"), opt_tuneParam = 10, opt_penfun = "mean", opt_ortho = 1, opt_earlystop = "no", verbose = FALSE) ## S3 method for class 'fsdam' plot(x, which=c("mse", "history", "decoder.func", "scatterplot"), k=NULL, dim.1=NULL, dim.2=NULL, col.predict=2, ...)
dat |
data frame. |
opt_numCode |
number of components to extract |
opt_seed |
seed for torch |
opt_model |
n for newpenalization |
opt_gpu |
zero-based index of gpu to be used among all gpus. If negative, then no gpu is used |
opt_k |
number of nodes in the coding/decoding layers |
opt_nEpochs |
number of epochs for training |
opt_constr |
constraint string |
opt_tuneParam |
tuning parameter for monotonicity penalty |
opt_penfun |
penalize sum or mean |
opt_ortho |
tuning parameter for orthogonality penalty |
opt_earlystop |
whether to stop early |
verbose |
verbose |
x |
fsdam object |
which |
which |
k |
the component to plot |
dim.1 |
index of the first variable |
dim.2 |
index of the second variable |
col.predict |
color of the predicted curve when which = scatterplot |
... |
plotting arguments |
If the torch python package is not available, this function will stop.
To make sure the right python installation is used, run reticulate::use_python("/app/easybuild/software/Python/3.7.4-foss-2016b/bin/python") in R before running this function for the first time.
It is recommended that dat is scaled before calling fsdam.
Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.
## Not run: fit=fsdam(hvtn505tier1[1:100,-1], opt_numCode=2, verbose=TRUE) fit plot(fit,which="mse") plot(fit,which="history") ## End(Not run)
## Not run: fit=fsdam(hvtn505tier1[1:100,-1], opt_numCode=2, verbose=TRUE) fit plot(fit,which="mse") plot(fit,which="history") ## End(Not run)
Contains eight immune response variables from the vaccine arm of the HVTN 505 trial.
data("hvtn505tier1")
data("hvtn505tier1")
A data frame with 150 observations on the following 9 variables.
ptid
a character vector
CD8_ANYVRCENV_PolyfunctionalityScore_score
a numeric vector
IgGw28_env_mdw
a numeric vector
IgGw28_V1V2_mdw
a numeric vector
IgGw28_gp41_mdw
a numeric vector
ADCP1
a numeric vector
R2aConSgp140CFI
a numeric vector
IgAw28_env_mdw
a numeric vector
IgG3w28_env_mdw
a numeric vector
Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.
Janes, H.E., Cohen, K.W., Frahm, N., De Rosa, S.C., Sanchez, B., Hural, J. et al (2017), Higher T-cell responses induced by DNA/rAd5 HIV-1 preventive vaccine are associated with lower HIV-1 infection risk in an efficacy trial, The Journal of infectious diseases, 215, 1376-1385.
Fong, Y., Shen, X., Ashley, V.C., Deal, A., Seaton, K.E., Yu, C. et al (2018), Vaccine-induced antibody responses modify the association between T-cell immune responses and HIV-1 infection risk in HVTN 505, The Journal of Infectious Diseases, 217, 1280–1288.
Neidich, S.D., Fong, Y., Shen, X., Ashley, V.C., Deal, A., Seaton, K.E. et al (2019), Antibody Fc-effector Functions and IgG3 Associates with Decreased HIV-1 Acquisition Risk, The Journal of Infectious Diseases, 129, 4838-4849.